# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import csv import datetime import io import itertools import logging import psycopg2 import operator import os import re from odoo import api, fields, models from odoo.tools.translate import _ from odoo.tools.mimetypes import guess_mimetype from odoo.tools.misc import ustr from odoo.tools import DEFAULT_SERVER_DATE_FORMAT, DEFAULT_SERVER_DATETIME_FORMAT try: from cStringIO import StringIO except ImportError: from StringIO import StringIO FIELDS_RECURSION_LIMIT = 2 ERROR_PREVIEW_BYTES = 200 _logger = logging.getLogger(__name__) try: import xlrd try: from xlrd import xlsx except ImportError: xlsx = None except ImportError: xlrd = xlsx = None try: import odf_ods_reader except ImportError: odf_ods_reader = None FILE_TYPE_DICT = { 'text/csv': ('csv', True, None), 'application/vnd.ms-excel': ('xls', xlrd, 'xlrd'), 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': ('xlsx', xlsx, 'xlrd >= 0.8'), 'application/vnd.oasis.opendocument.spreadsheet': ('ods', odf_ods_reader, 'odfpy') } EXTENSIONS = { '.' + ext: handler for mime, (ext, handler, req) in FILE_TYPE_DICT.iteritems() } class Import(models.TransientModel): _name = 'base_import.import' # allow imports to survive for 12h in case user is slow _transient_max_hours = 12.0 res_model = fields.Char('Model') file = fields.Binary('File', help="File to check and/or import, raw binary (not base64)") file_name = fields.Char('File Name') file_type = fields.Char('File Type') @api.model def get_fields(self, model, depth=FIELDS_RECURSION_LIMIT): """ Recursively get fields for the provided model (through fields_get) and filter them according to importability The output format is a list of ``Field``, with ``Field`` defined as: .. class:: Field .. attribute:: id (str) A non-unique identifier for the field, used to compute the span of the ``required`` attribute: if multiple ``required`` fields have the same id, only one of them is necessary. .. attribute:: name (str) The field's logical (Odoo) name within the scope of its parent. .. attribute:: string (str) The field's human-readable name (``@string``) .. attribute:: required (bool) Whether the field is marked as required in the model. Clients must provide non-empty import values for all required fields or the import will error out. .. attribute:: fields (list(Field)) The current field's subfields. The database and external identifiers for m2o and m2m fields; a filtered and transformed fields_get for o2m fields (to a variable depth defined by ``depth``). Fields with no sub-fields will have an empty list of sub-fields. :param str model: name of the model to get fields form :param int landing: depth of recursion into o2m fields """ Model = self.env[model] importable_fields = [{ 'id': 'id', 'name': 'id', 'string': _("External ID"), 'required': False, 'fields': [], 'type': 'id', }] model_fields = Model.fields_get() blacklist = models.MAGIC_COLUMNS + [Model.CONCURRENCY_CHECK_FIELD] for name, field in model_fields.iteritems(): if name in blacklist: continue # an empty string means the field is deprecated, @deprecated must # be absent or False to mean not-deprecated if field.get('deprecated', False) is not False: continue if field.get('readonly'): states = field.get('states') if not states: continue # states = {state: [(attr, value), (attr2, value2)], state2:...} if not any(attr == 'readonly' and value is False for attr, value in itertools.chain.from_iterable(states.itervalues())): continue field_value = { 'id': name, 'name': name, 'string': field['string'], # Y U NO ALWAYS HAS REQUIRED 'required': bool(field.get('required')), 'fields': [], 'type': field['type'], } if field['type'] in ('many2many', 'many2one'): field_value['fields'] = [ dict(field_value, name='id', string=_("External ID"), type='id'), dict(field_value, name='.id', string=_("Database ID"), type='id'), ] elif field['type'] == 'one2many' and depth: field_value['fields'] = self.get_fields(field['relation'], depth=depth-1) if self.user_has_groups('base.group_no_one'): field_value['fields'].append({'id': '.id', 'name': '.id', 'string': _("Database ID"), 'required': False, 'fields': [], 'type': 'id'}) importable_fields.append(field_value) # TODO: cache on model? return importable_fields @api.multi def _read_file(self, options): """ Dispatch to specific method to read file content, according to its mimetype or file type :param options : dict of reading options (quoting, separator, ...) """ self.ensure_one() # guess mimetype from file content mimetype = guess_mimetype(self.file) (file_extension, handler, req) = FILE_TYPE_DICT.get(mimetype, (None, None, None)) if handler: try: return getattr(self, '_read_' + file_extension)(options) except Exception: _logger.warn("Failed to read file '%s' (transient id %d) using guessed mimetype %s", self.file_name or '', self.id, mimetype) # try reading with user-provided mimetype (file_extension, handler, req) = FILE_TYPE_DICT.get(self.file_type, (None, None, None)) if handler: try: return getattr(self, '_read_' + file_extension)(options) except Exception: _logger.warn("Failed to read file '%s' (transient id %d) using user-provided mimetype %s", self.file_name or '', self.id, self.file_type) # fallback on file extensions as mime types can be unreliable (e.g. # software setting incorrect mime types, or non-installed software # leading to browser not sending mime types) if self.file_name: p, ext = os.path.splitext(self.file_name) if ext in EXTENSIONS: try: return getattr(self, '_read_' + ext[1:])(options) except Exception: _logger.warn("Failed to read file '%s' (transient id %s) using file extension", self.file_name, self.id) if req: raise ImportError(_("Unable to load \"{extension}\" file: requires Python module \"{modname}\"").format(extension=file_extension, modname=req)) raise ValueError(_("Unsupported file format \"{}\", import only supports CSV, ODS, XLS and XLSX").format(self.file_type)) @api.multi def _read_xls(self, options): """ Read file content, using xlrd lib """ book = xlrd.open_workbook(file_contents=self.file) return self._read_xls_book(book) def _read_xls_book(self, book): sheet = book.sheet_by_index(0) # emulate Sheet.get_rows for pre-0.9.4 for row in itertools.imap(sheet.row, range(sheet.nrows)): values = [] for cell in row: if cell.ctype is xlrd.XL_CELL_NUMBER: is_float = cell.value % 1 != 0.0 values.append( unicode(cell.value) if is_float else unicode(int(cell.value)) ) elif cell.ctype is xlrd.XL_CELL_DATE: is_datetime = cell.value % 1 != 0.0 # emulate xldate_as_datetime for pre-0.9.3 dt = datetime.datetime(*xlrd.xldate.xldate_as_tuple(cell.value, book.datemode)) values.append( dt.strftime(DEFAULT_SERVER_DATETIME_FORMAT) if is_datetime else dt.strftime(DEFAULT_SERVER_DATE_FORMAT) ) elif cell.ctype is xlrd.XL_CELL_BOOLEAN: values.append(u'True' if cell.value else u'False') elif cell.ctype is xlrd.XL_CELL_ERROR: raise ValueError( _("Error cell found while reading XLS/XLSX file: %s") % xlrd.error_text_from_code.get( cell.value, "unknown error code %s" % cell.value) ) else: values.append(cell.value) if any(x for x in values if x.strip()): yield values # use the same method for xlsx and xls files _read_xlsx = _read_xls @api.multi def _read_ods(self, options): """ Read file content using ODSReader custom lib """ doc = odf_ods_reader.ODSReader(file=io.BytesIO(self.file)) return ( row for row in doc.getFirstSheet() if any(x for x in row if x.strip()) ) @api.multi def _read_csv(self, options): """ Returns a CSV-parsed iterator of all empty lines in the file :throws csv.Error: if an error is detected during CSV parsing :throws UnicodeDecodeError: if ``options.encoding`` is incorrect """ csv_data = self.file # TODO: guess encoding with chardet? Or https://github.com/aadsm/jschardet encoding = options.get('encoding', 'utf-8') if encoding != 'utf-8': # csv module expect utf-8, see http://docs.python.org/2/library/csv.html csv_data = csv_data.decode(encoding).encode('utf-8') csv_iterator = csv.reader( StringIO(csv_data), quotechar=str(options['quoting']), delimiter=str(options['separator'])) return ( [item.decode('utf-8') for item in row] for row in csv_iterator if any(x for x in row if x.strip()) ) @api.model def _try_match_column(self, preview_values, options): """ Returns the potential field types, based on the preview values, using heuristics :param preview_values : list of value for the column to determine :param options : parsing options """ # If all values are empty in preview than can be any field if all([v == '' for v in preview_values]): return ['all'] # If all values starts with __export__ this is probably an id if all(v.startswith('__export__') for v in preview_values): return ['id', 'many2many', 'many2one', 'one2many'] # If all values can be cast to int type is either id, float or monetary # Exception: if we only have 1 and 0, it can also be a boolean try: field_type = ['id', 'integer', 'float', 'monetary', 'many2one', 'many2many', 'one2many'] res = set(int(v) for v in preview_values) if {0, 1}.issuperset(res): field_type.append('boolean') return field_type except ValueError: pass # If all values are either True or False, type is boolean if all(val.lower() in ('true', 'false', 't', 'f', '') for val in preview_values): return ['boolean'] # If all values can be cast to float, type is either float or monetary # Or a date/datetime if it matches the pattern results = [] try: thousand_separator = decimal_separator = False for val in preview_values: if val == '': continue # value might have the currency symbol left or right from the value val = self._remove_currency_symbol(val) if val: if options.get('float_thousand_separator') and options.get('float_decimal_separator'): val = val.replace(options['float_thousand_separator'], '').replace(options['float_decimal_separator'], '.') # We are now sure that this is a float, but we still need to find the # thousand and decimal separator else: if val.count('.') > 1: options['float_thousand_separator'] = '.' options['float_decimal_separator'] = ',' elif val.count(',') > 1: options['float_thousand_separator'] = ',' options['float_decimal_separator'] = '.' elif val.find('.') > val.find(','): thousand_separator = ',' decimal_separator = '.' elif val.find(',') > val.find('.'): thousand_separator = '.' decimal_separator = ',' else: # This is not a float so exit this try float('a') if thousand_separator and not options.get('float_decimal_separator'): options['float_thousand_separator'] = thousand_separator options['float_decimal_separator'] = decimal_separator results = ['float', 'monetary'] except ValueError: pass # Try to see if all values are a date or datetime dt = datetime.datetime separator = [' ', '/', '-'] date_format = ['%mr%dr%Y', '%dr%mr%Y', '%Yr%mr%d', '%Yr%dr%m'] date_patterns = [options['date_format']] if options.get('date_format') else [] if not date_patterns: date_patterns = [pattern.replace('r', sep) for sep in separator for pattern in date_format] date_patterns.extend([p.replace('Y', 'y') for p in date_patterns]) datetime_patterns = [options['datetime_format']] if options.get('datetime_format') else [] if not datetime_patterns: datetime_patterns = [pattern + ' %H:%M:%S' for pattern in date_patterns] current_date_pattern = False current_datetime_pattern = False def check_patterns(patterns, preview_values): for pattern in patterns: match = True for val in preview_values: if not val: continue try: dt.strptime(val, pattern) except ValueError: match = False break if match: return pattern return False current_date_pattern = check_patterns(date_patterns, preview_values) if current_date_pattern: options['date_format'] = current_date_pattern results += ['date'] current_datetime_pattern = check_patterns(datetime_patterns, preview_values) if current_datetime_pattern: options['datetime_format'] = current_datetime_pattern results += ['datetime'] if results: return results return ['text', 'char', 'datetime', 'selection', 'many2one', 'one2many', 'many2many', 'html'] @api.model def _find_type_from_preview(self, options, preview): type_fields = [] if preview: for column in range(0, len(preview[0])): preview_values = [value[column].strip() for value in preview] type_field = self._try_match_column(preview_values, options) type_fields.append(type_field) return type_fields def _match_header(self, header, fields, options): """ Attempts to match a given header to a field of the imported model. :param str header: header name from the CSV file :param fields: :param dict options: :returns: an empty list if the header couldn't be matched, or all the fields to traverse :rtype: list(Field) """ string_match = None for field in fields: # FIXME: should match all translations & original # TODO: use string distance (levenshtein? hamming?) if header.lower() == field['name'].lower(): return [field] if header.lower() == field['string'].lower(): # matching string are not reliable way because # strings have no unique constraint string_match = field if string_match: # this behavior is only applied if there is no matching field['name'] return [string_match] if '/' not in header: return [] # relational field path traversal = [] subfields = fields # Iteratively dive into fields tree for section in header.split('/'): # Strip section in case spaces are added around '/' for # readability of paths match = self._match_header(section.strip(), subfields, options) # Any match failure, exit if not match: return [] # prep subfields for next iteration within match[0] field = match[0] subfields = field['fields'] traversal.append(field) return traversal def _match_headers(self, rows, fields, options): """ Attempts to match the imported model's fields to the titles of the parsed CSV file, if the file is supposed to have headers. Will consume the first line of the ``rows`` iterator. Returns a pair of (None, None) if headers were not requested or the list of headers and a dict mapping cell indices to key paths in the ``fields`` tree :param Iterator rows: :param dict fields: :param dict options: :rtype: (None, None) | (list(str), dict(int: list(str))) """ if not options.get('headers'): return [], {} headers = next(rows) return headers, { index: [field['name'] for field in self._match_header(header, fields, options)] or None for index, header in enumerate(headers) } @api.multi def parse_preview(self, options, count=10): """ Generates a preview of the uploaded files, and performs fields-matching between the import's file data and the model's columns. If the headers are not requested (not options.headers), ``matches`` and ``headers`` are both ``False``. :param int count: number of preview lines to generate :param options: format-specific options. CSV: {encoding, quoting, separator, headers} :type options: {str, str, str, bool} :returns: {fields, matches, headers, preview} | {error, preview} :rtype: {dict(str: dict(...)), dict(int, list(str)), list(str), list(list(str))} | {str, str} """ self.ensure_one() fields = self.get_fields(self.res_model) try: rows = self._read_file(options) headers, matches = self._match_headers(rows, fields, options) # Match should have consumed the first row (iif headers), get # the ``count`` next rows for preview preview = list(itertools.islice(rows, count)) assert preview, "CSV file seems to have no content" header_types = self._find_type_from_preview(options, preview) if options.get('keep_matches', False) and len(options.get('fields', [])): matches = {} for index, match in enumerate(options.get('fields')): if match: matches[index] = match.split('/') return { 'fields': fields, 'matches': matches or False, 'headers': headers or False, 'headers_type': header_types or False, 'preview': preview, 'options': options, 'advanced_mode': any([len(models.fix_import_export_id_paths(col)) > 1 for col in headers or []]), 'debug': self.user_has_groups('base.group_no_one'), } except Exception, error: # Due to lazy generators, UnicodeDecodeError (for # instance) may only be raised when serializing the # preview to a list in the return. _logger.debug("Error during parsing preview", exc_info=True) preview = None if self.file_type == 'text/csv': preview = self.file[:ERROR_PREVIEW_BYTES].decode('iso-8859-1') return { 'error': str(error), # iso-8859-1 ensures decoding will always succeed, # even if it yields non-printable characters. This is # in case of UnicodeDecodeError (or csv.Error # compounded with UnicodeDecodeError) 'preview': preview, } @api.model def _convert_import_data(self, fields, options): """ Extracts the input browse_record and fields list (with ``False``-y placeholders for fields to *not* import) into a format Model.import_data can use: a fields list without holes and the precisely matching data matrix :param list(str|bool): fields :returns: (data, fields) :rtype: (list(list(str)), list(str)) :raises ValueError: in case the import data could not be converted """ # Get indices for non-empty fields indices = [index for index, field in enumerate(fields) if field] if not indices: raise ValueError(_("You must configure at least one field to import")) # If only one index, itemgetter will return an atom rather # than a 1-tuple if len(indices) == 1: mapper = lambda row: [row[indices[0]]] else: mapper = operator.itemgetter(*indices) # Get only list of actually imported fields import_fields = filter(None, fields) rows_to_import = self._read_file(options) if options.get('headers'): rows_to_import = itertools.islice(rows_to_import, 1, None) data = [ list(row) for row in itertools.imap(mapper, rows_to_import) # don't try inserting completely empty rows (e.g. from # filtering out o2m fields) if any(row) ] return data, import_fields @api.model def _remove_currency_symbol(self, value): value = value.strip() negative = False # Careful that some countries use () for negative so replace it by - sign if value.startswith('(') and value.endswith(')'): value = value[1:-1] negative = True float_regex = re.compile(r'([-]?[0-9.,]+)') split_value = filter(None, float_regex.split(value)) if len(split_value) > 2: # This is probably not a float return False if len(split_value) == 1: if float_regex.search(split_value[0]) is not None: return split_value[0] if not negative else '-' + split_value[0] return False else: # String has been split in 2, locate which index contains the float and which does not currency_index = 0 if float_regex.search(split_value[0]) is not None: currency_index = 1 # Check that currency exists currency = self.env['res.currency'].search([('symbol', '=', split_value[currency_index].strip())]) if len(currency): return split_value[(currency_index + 1) % 2] if not negative else '-' + split_value[(currency_index + 1) % 2] # Otherwise it is not a float with a currency symbol return False @api.model def _parse_float_from_data(self, data, index, name, options): thousand_separator = options.get('float_thousand_separator', ' ') decimal_separator = options.get('float_decimal_separator', '.') for line in data: if not line[index]: continue line[index] = line[index].replace(thousand_separator, '').replace(decimal_separator, '.') old_value = line[index] line[index] = self._remove_currency_symbol(line[index]) if line[index] is False: raise ValueError(_("Column %s contains incorrect values (value: %s)" % (name, old_value))) @api.multi def _parse_import_data(self, data, import_fields, options): """ Lauch first call to _parse_import_data_recursive with an empty prefix. _parse_import_data_recursive will be run recursively for each relational field. """ return self._parse_import_data_recursive(self.res_model, '', data, import_fields, options) @api.multi def _parse_import_data_recursive(self, model, prefix, data, import_fields, options): # Get fields of type date/datetime all_fields = self.env[model].fields_get() for name, field in all_fields.iteritems(): name = prefix + name if field['type'] in ('date', 'datetime') and name in import_fields: # Parse date index = import_fields.index(name) dt = datetime.datetime server_format = DEFAULT_SERVER_DATE_FORMAT if field['type'] == 'date' else DEFAULT_SERVER_DATETIME_FORMAT if options.get('%s_format' % field['type'], server_format) != server_format: user_format = ustr(options.get('%s_format' % field['type'])).encode('utf-8') for num, line in enumerate(data): if line[index]: try: line[index] = dt.strftime(dt.strptime(ustr(line[index].strip()).encode('utf-8'), user_format), server_format) except ValueError, e: raise ValueError(_("Column %s contains incorrect values. Error in line %d: %s") % (name, num + 1, ustr(e.message))) except Exception, e: raise ValueError(_("Error Parsing Date [%s:L%d]: %s") % (name, num + 1, ustr(e.message))) # Check if the field is in import_field and is a relational (followed by /) # Also verify that the field name exactly match the import_field at the correct level. elif any(name + '/' in import_field and name == import_field.split('/')[prefix.count('/')] for import_field in import_fields): # Recursive call with the relational as new model and add the field name to the prefix self._parse_import_data_recursive(field['relation'], name + '/', data, import_fields, options) elif field['type'] in ('float', 'monetary') and name in import_fields: # Parse float, sometimes float values from file have currency symbol or () to denote a negative value # We should be able to manage both case index = import_fields.index(name) self._parse_float_from_data(data, index, name, options) return data @api.multi def do(self, fields, options, dryrun=False): """ Actual execution of the import :param fields: import mapping: maps each column to a field, ``False`` for the columns to ignore :type fields: list(str|bool) :param dict options: :param bool dryrun: performs all import operations (and validations) but rollbacks writes, allows getting as much errors as possible without the risk of clobbering the database. :returns: A list of errors. If the list is empty the import executed fully and correctly. If the list is non-empty it contains dicts with 3 keys ``type`` the type of error (``error|warning``); ``message`` the error message associated with the error (a string) and ``record`` the data which failed to import (or ``false`` if that data isn't available or provided) :rtype: list({type, message, record}) """ self.ensure_one() self._cr.execute('SAVEPOINT import') try: data, import_fields = self._convert_import_data(fields, options) # Parse date and float field data = self._parse_import_data(data, import_fields, options) except ValueError, error: return [{ 'type': 'error', 'message': unicode(error), 'record': False, }] _logger.info('importing %d rows...', len(data)) model = self.env[self.res_model].with_context(import_file=True) defer_parent_store = self.env.context.get('defer_parent_store_computation', True) if defer_parent_store and model._parent_store: model = model.with_context(defer_parent_store_computation=True) import_result = model.load(import_fields, data) _logger.info('done') # If transaction aborted, RELEASE SAVEPOINT is going to raise # an InternalError (ROLLBACK should work, maybe). Ignore that. # TODO: to handle multiple errors, create savepoint around # write and release it in case of write error (after # adding error to errors array) => can keep on trying to # import stuff, and rollback at the end if there is any # error in the results. try: if dryrun: self._cr.execute('ROLLBACK TO SAVEPOINT import') else: self._cr.execute('RELEASE SAVEPOINT import') except psycopg2.InternalError: pass return import_result['messages']